Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 404-408, 2020.
Article in Chinese | WPRIM | ID: wpr-821969

ABSTRACT

@#Guided bone regeneration (GBR) barrier membranes are of great significance for the reconstruction of the health and function of different periodontal tissues. Biocompatibility, spatial maintenance, closure, controllability and biological activation are the main criteria that should be met by these membranes. Artificial barrier membrane biomaterials can be divided into synthetic polymer materials, natural polymer materials and metals. According to their degradation characteristics, these membranes can be divided into two categories, absorbable and nonabsorbable membranes. GBR used for horizontal bone increments can be used to treat various types of bone defects, including the treatment of bone fenestration and bone cracking. The use of a non-absorbable e-PTFE membrane or absorbable collagen membrane can achieve the expected effect. However, for incremental or vertical bone growth at the alveolar crest, the use of this membrane is very challenging and requires good strength to maintain the osteogenic space. This space can be enhanced with e-PTFE or d-PTFE membranes with stable morphology, or absorbable membranes can be covered with titanium plates or meshes to achieve vertical bone increments. Currently, bioactive membranes, digital 3D-printed titanium membranes and piezoelectric active biological membranes are research hotspots. In future research, the biological activation of these membranes will be further improved, which will promote the development of artificial membranes in the next stage.

2.
Korean Journal of Dental Materials ; (4): 243-256, 2018.
Article in Korean | WPRIM | ID: wpr-759673

ABSTRACT

The purpose of this study was to investigate the effects of the anodization and cyclic calcification treatment on the surface characteristic and bioactivity of the titanium thin sheet in order to obtain basic data for the production of bioactive titanium membrane. A 30×20×0.08 mm titanium sheets were prepared, and then they were pickled for 10 seconds in the solution which was mixed with HNO₃: HF: H₂O in a ratio of 12: 7: 81. The TiO₂ nanotube layer was formed to increase the specific surface area of the titanium, and then the cyclic calcification treatment was performed to induce precipitation of hydroxiapatite by improvement of the bioactivity. The corrosion resistance test, wettability test and immersion test in simulated body solution were conducted to investigate the effect of these surface treatments. The nanotubes formed by the anodization treatment have a dense structure in which small diameter tubes are formed between relatively large diameter tubes, and their inside was hollow and the outer walls were coupled to each other. The hydroxyapatite precipitates were well combined on the nanotubes by the penetration into the nanotube layer by successive cyclic calcification treatment, and the precipitation of hydroxyapatite tended to increase proportionally after immersion in simulated body solution as the number of cycles increased. In conclusion, it was confirmed that induction of precipitation of hydroxyapatite by cyclic calcification treatment after forming the nanotube TiO₂ nanotube layer on the surface of the titanium membrane can contribute to improvement of bioactivity.


Subject(s)
Corrosion , Durapatite , Immersion , Membranes , Nanotubes , Titanium , Wettability
3.
The Journal of the Korean Academy of Periodontology ; : 273-288, 2006.
Article in Korean | WPRIM | ID: wpr-76927

ABSTRACT

The purpose of this study was to evaluate exophytically vertical bone formation in rabbit calvaria by the concept of guided bone regeneration with a custom-made porous titanium membrane combined with bone graft materials. For this purpose, a total of 12 rabbits were used, and decorticated calvaria were created with round carbide bur to promote bleeding and blood clot formation in the wound area. Porous titanium membranes (0.5 mm in pore diameter, 10 mm in one side, 2 mm in inner height) were placed on the decorticated calvaria, fixed with metal pins and covered with full-thickness flap. Experimental group I was treated as titanium membrane only. Experimental group II,III,IV was treated as titanium membrane with BBM, titanium membrane with DFDB and titanium membrane with FDB. The animals were sacrificed at 8 and 12 weeks after surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. 1. Porous titanium membrane was biocompatable and capable of maintaining the regeneration space. 2. At 8 and 12 weeks, all groups demonstrated exophytic bone formation and there was a statistical significant difference among different groups only at 12 weeks. 3. The DFDB group revealed the most new bone formation compared to other groups (p<0.05). 4. At 12 weeks, DFDB and FDB groups showed the most significant resorption of graft materials (p<0.05). 5. The BBM was not resorbed at all until 12 weeks. 6. The fixation metal pin revealed excellent effect in peripheral sealing. On the basis of these findings, we conclude that a porous titanium membrane may be used as an augmentation membrane for guided bone regeneration, and DFDB as an effective bone forming graft material. The fixation of the membrane with pin will be helpful in GBR technique. However, further study is required to examine their efficacy in the intraoral experiments.


Subject(s)
Rabbits , Animals
4.
The Journal of the Korean Academy of Periodontology ; : 223-236, 2006.
Article in Korean | WPRIM | ID: wpr-10068

ABSTRACT

The purpose of the present study was to evaluate the effect of bone graft materials including deproteinized bovine bone(DBB), demineralized freeze-dried bone(DFDB), freeze-dried bone(FDB) on bone formation in guided bone regeneration using perforated titanium membrane(TM). 16 adult male rabbits(mean BW 2kg) were used in this study and 4 rabbits allotted to each test group. Intramarrow penetration(diameter 6.5mm) was done with round carbide bur on calvaria to promote blood supply and clot formation in the wound area. The test groups were devided into 4 groups as follows: TM only(test 1), TM +DBB(test 2), TM +DFDB(test 3), TM +FDB(test 4). Perforated titanium membrane was contoured in rectangular parallelepiped shape(0.5mm pore diameter, 10mm in one side, 2mm in inner height), filled the each graft material and placed on the decorticated carvaria. Perforated titanium membrane was fixed with resorbable suture materials. The animals were sacrificed at 2, 8 weeks after the surgery. Non-decalcified preparations were routinely processed for histologic analysis. The results of this study were as follows: 1. Perforated titanium membrane was biocompatible. 2. Perforated titanium membrane had capability of maintaining the space during the healing period but invasion of soft tissue through the perforations of titanium membrane decreased the space available for bone formation. 3. In test 1 group without bone graft material, the amount of bone formation and bone maturation was better than other test groups. 4. Among the graft materials, the effect of freeze-dried bone on bone formation was best. 5. In the test groups using deproteinized bovine bone, demineralized freeze-dried bone, bone formation was a little. The spacemaking capability of the membrane may be crucial for bone formation. The combined treatment with the perforated titanium membrane and deproteinized bovine bone or demineralized freeze-dried bone failed to demonstrate any added effect in the bone formation. Minimization of size and numbers of perforations of titanium membrane or use of occlusive titanium membrane might be effective to acquire predictable results in the vertical bone formation.


Subject(s)
Adult , Animals , Humans , Male , Rabbits , Bone Regeneration , Membranes , Osteogenesis , Skull , Sutures , Titanium , Transplants , Wounds and Injuries
SELECTION OF CITATIONS
SEARCH DETAIL